Gold Nanoparticles Treatment Reverses Brain Damage in Alzheimer’s Disease Model
https://link.springer.com/article/10.1007/s12035-019-01780-w
![]()
Molecular Neurobiology volume 57, pages926–936(2020)Cite this article
- Natalia dos Santos Tramontin,
- Sabrina da Silva,
- Rychard Arruda,
- Kellen Simon Ugioni,
- Paula Bortuluzzi Canteiro,
- Gustavo de Bem Silveira,
- Carolini Mendes,
- Paulo Cesar Lock Silveira &
- Alexandre Pastoris Muller
Abstract
- 290 Accesses
- 1 Altmetric
- Metrics details
Alzheimer’s disease (AD) is characterized by amyloid (A)β peptide accumulation and intracellular neurofibrillary tangles. New hypotheses have suggested that AD involves neuroinflammation and oxidative stress. Gold nanoparticles (AuNP) presents anti-inflammatory and antioxidant characteristics. The present study evaluated the AuNP treatment on an AD model (okadaic acid, OA). Male Wistar rats were injected intracerebroventricularly with OA (100 μg); 24 h later they were treated with 20-nm AuNP (at a dose 2.5 mg/kg) every 48 h for 21 days. The following groups were separated (n = 12/group): Sham, AuNP, OA, and OA + AuNP. OA increases Tau phosphorylation in the cortex and hippocampus, while AuNP treatment maintained it as normal. Spatial memory was impaired by OA, and AuNP treatment prevented this deficit. Neurotrophic factors (BDNF and NGF- β) in the cortex and hippocampus were decreased by OA. The OA and OA + AuNP groups showed increased interleukin (IL)-1 β in the hippocampus and cortex, and the AuNP group showed increased IL-1 β in the hippocampus. In both groups, S100 levels in the cortex and hippocampus were increased by OA. IL-4 was increased in OA + AuNP animals. AuNPs prevented oxidative stress (sulfhydryl and nitrite levels) in brain structures induced by OA. Moreover, OA modulated ATP synthase activity, and AuNP maintained normal brain mitochondrial function. The antioxidant capacities were reduced by OA, and AuNP restored antioxidant status (SOD, catalase activities and GSH levels) on brain. OA-induced damage on brain tissues, and long-term AuNP treatment prevented the neuroinflammation, modulation of mitochondrial function, and impaired cognition induced by AD model, showing that AuNPs may be a promising treatment for neurodisease caused by these elements.
요약
알츠하이머 병 (AD)은 아밀로이드 (A) β 펩티드 축적 및 세포 내 신경 섬유 엉킴을 특징으로 한다. 새로운 가설은 AD가 신경 염증 및 산화적 스트레스를 수반한다고 제안했다. 금 나노 입자 (AuNP)는 항염증 및 항산화 특성을 나타냅니다. 본 연구는 AD모델 (오카다산, OA)에 대한 AuNP 처리를 평가 하였다. 수컷 Wistar 랫트에 뇌 실내 OA (100 μg)를 주사 하였다; 24 시간 후, 21 일 동안 48 시간마다 20nm AuNP (용량 2.5 mg / kg)로 처리 하였다. Sham, AuNP, OA 및 OA + AuNP 그룹은 분리되었다 (n == 12 / 그룹). ONP 처리는 피질과 해마에서 타우 인산화를 증가시키는 반면, ONP 처리는이를 정상적으로 유지 하였다. 공간 기억은 OA에 의해 손상되었고, AuNP 처리는 이러한 결손을 방지했다. 피질과 해마의 신경 영양 인자 (BDNF와 NGF-β)는 OA에 의해 감소되었다. OA와 OA + AuNP 군은 해마와 피질에서 인터루킨 (IL) -1β가 증가한 것으로 나타 났으며, AuNP 군은 해마에서 IL-1β가 증가한 것으로 나타났다. 두 그룹에서, 피질 및 해마의 S100 수준은 OA에 의해 증가되었다. IL-4는 OA + AuNP 동물에서 증가했다. AuNP는 OA에 의해 유도 된 뇌 구조에서 산화 스트레스 (설프 하이 드릴 및 아질산염 수준)를 방지 하였다. 또한, OA는 ATP 신타 제 활성을 조절하였고, AuNP는 정상적인 뇌 미토콘드리아 기능을 유지 하였다. 산화 방지제 용량은 OA에 의해 감소되었고, AuNP는 뇌에서 산화 방지제 상태 (SOD, 카탈라제 활성 및 GSH 수준)를 회복시켰다. 뇌 조직에 OA- 유도 된 손상 및 장기 AuNP 처리는 신경 염증, 미토콘드리아 기능의 조절 및 AD 모델에 의해 유발 된인지 장애를 예방하여, AuNP가 이들 요소에 의해 야기되는 신경 질환에 대한 유망한 치료 일 수 있음을 보여 주었다.
This is a preview of subscription content, log in to check access.
References
Download references
- 1.
Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439- 2.
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189- 3.
Villemagne VL, Dore V, Burnham SC, Masters CL, Rowe CC (2018) Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 14(4):225–236. https://doi.org/10.1038/nrneurol.2018.9- 4.
Nazem A, Sankowski R, Bacher M, Al-Abed Y (2015) Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation 12:74. https://doi.org/10.1186/s12974-015-0291-y- 5.
Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC (2006) Debate: "is increasing neuroinflammation beneficial for neural repair?". J Neuroimmune Pharmacol 1 (3):195–211. doi:https://doi.org/10.1007/s11481-006-9021-7- 6.
Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Demen 10(1 Suppl):S76–S83. https://doi.org/10.1016/j.jalz.2013.12.010- 7.
Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall’Igna O, Mazzini GS, Souza DO et al (2010) Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 7:6. https://doi.org/10.1186/1742-2094-7-6- 8.
Deng S, Ai Y, Gong H, Feng Q, Li X, Chen C, Liu Z, Wang Y et al (2018) Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochem Biophys Res Commun 496(3):865–871. https://doi.org/10.1016/j.bbrc.2018.01.136- 9.
Muller AP, Haas CB, Camacho-Pereira J, Brochier AW, Gnoatto J, Zimmer ER, de Souza DO, Galina A et al (2013) Insulin prevents mitochondrial generation of H(2)O(2) in rat brain. Exp Neurol 247:66–72. https://doi.org/10.1016/j.expneurol.2013.03.007- 10.
Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 57(4):1087–1103. https://doi.org/10.3233/JAD-160726- 11.
Song GJ, Suk K (2017) Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci 9:139. https://doi.org/10.3389/fnagi.2017.00139- 12.
Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16(11):460–465- 13.
Yang Y, Wang JZ (2018) Nature of tau-associated neurodegeneration and the molecular mechanisms. J Alzheimers Dis 62(3):1305–1317. https://doi.org/10.3233/JAD-170788- 14.
Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69. https://doi.org/10.1007/s00401-009-0486-3- 15.
Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30(2):346–358. https://doi.org/10.1007/s12264-013-1414-z- 16.
Danysz W, Parsons CG (2012) Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine - searching for the connections. Brit J Pharmacol 167(2):324–352. https://doi.org/10.1111/j.1476-5381.2012.02057.x- 17.
Zhang Z, Simpkins JW (2010) An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res 1359:233–246. https://doi.org/10.1016/j.brainres.2010.08.077- 18.
Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C (2014) Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer’s disease therapeutic application. Mol Neurobiol 50(3):852–865. https://doi.org/10.1007/s12035-014-8699-4- 19.
Paula MM, Petronilho F, Vuolo F, Ferreira GK, De Costa L, Santos GP, Effting PS, Dal-Pizzol F et al (2015) Gold nanoparticles and/or N-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner. J Biomed Mater Res A 103(10):3323–3330. https://doi.org/10.1002/jbm.a.35469- 20.
Larsen A, Kolind K, Pedersen DS, Doering P, Pedersen MO, Danscher G, Penkowa M, Stoltenberg M (2008) Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochem Cell Biol 130(4):681–692. https://doi.org/10.1007/s00418-008-0448-1- 21.
Pedersen MO, Larsen A, Pedersen DS, Stoltenberg M, Penkowa M (2009) Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury. Histol Histopathol 24(5):573–586. https://doi.org/10.14670/HH-24.573- 22.
Yang JP, Merin JP, Nakano T, Kato T, Kitade Y, Okamoto T (1995) Inhibition of the DNA-binding activity of NF-kappa B by gold compounds in vitro. FEBS Lett 361(1):89–96- 23.
Chircorian A, Barrios AM (2004) Inhibition of lysosomal cysteine proteases by chrysotherapeutic compounds: a possible mechanism for the antiarthritic activity of Au(I). Bioorg Med Chem Lett 14(20):5113–5116. https://doi.org/10.1016/j.bmcl.2004.07.073- 24.
Han S, Kim K, Kim H, Kwon J, Lee YH, Lee CK, Song Y, Lee SJ et al (2008) Auranofin inhibits overproduction of pro-inflammatory cytokines, cyclooxygenase expression and PGE2 production in macrophages. Arch Pharm Res 31(1):67–74- 25.
Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, Chen DH, Chou CH et al (2007) Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum 56(2):544–554. https://doi.org/10.1002/art.22401- 26.
Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S, Gurunathan S (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8:16. https://doi.org/10.1186/1477-3155-8-16- 27.
Sul OJ, Kim JC, Kyung TW, Kim HJ, Kim YY, Kim SH, Kim JS, Choi HS (2010) Gold nanoparticles inhibited the receptor activator of nuclear factor-kappab ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem 74(11):2209–2213. https://doi.org/10.1271/bbb.100375- 28.
Muller AP, Ferreira GK, da Silva S, Nesi RT, de Bem Silveira G, Mendes C, Pinho RA, da Silva Paula MM et al (2017) Safety protocol for the gold nanoparticles administration in rats. Mater Sci Eng C Mater Biol Appl 77:1145–1150. https://doi.org/10.1016/j.msec.2017.04.027- 29.
Cho WS, Chae C (2004) Expression of cyclooxygenase-2 and nitric oxide synthase 2 in swine ulcerative colitis caused by Salmonella typhimurium. Vet Pathol 41(4):419–423. https://doi.org/10.1354/vp.41-4-419- 30.
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77- 31.
Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312- 32.
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126- 33.
Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74(1):214–226- 34.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275- 35.
Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, Weiner M, Aisen PS (2014) The preclinical Alzheimer cognitive composite measuring amyloid-related decline. Jama Neurol 71(8):961–970. https://doi.org/10.1001/jamaneurol.2014.803- 36.
Spires-Jones TL, Hyman BT (2014) The intersection of amyloid Beta and Tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771. https://doi.org/10.1016/j.neuron.2014.05.004- 37.
Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, Shukla R (2013) Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 715(1–3):381–394. https://doi.org/10.1016/j.ejphar.2013.04.033- 38.
Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R, Nath C (2012) A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci 90(19–20):713–720. https://doi.org/10.1016/j.lfs.2012.03.012- 39.
Bahamonde J, Brenseke B, Chan MY, Kent RD, Vikesland PJ, Prater MR (2018) Gold nanoparticle toxicity in mice and rats: Species differences. Toxicol Pathol 46(4):431–443. https://doi.org/10.1177/0192623318770608- 40.
Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi JA, de Souza CT, Paula MMS et al (2017) Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C Mater Biol Appl 77:476–483. https://doi.org/10.1016/j.msec.2017.03.283- 41.
Takeuchi I, Nobata S, Oiri N, Tomoda K, Makino K (2017) Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: effects of particle size. Biomed Mater Eng 28(3):315–323. https://doi.org/10.3233/BME-171677- 42.
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S, Apmi (2018) Precision pharmacology for Alzheimer’s disease. Pharmacological research 130:331–365. https://doi.org/10.1016/j.phrs.2018.02.014- 43.
Hall JM, Gomez-Pinilla F, Savage LM (2018) Nerve growth factor is responsible for exercise-induced recovery of septohippocampal cholinergic structure and function. Front Neurosci-Switz 12. https://doi.org/10.3389/Fnins.2018.00773
- 44.
von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373 (3):729–741. doi:https://doi.org/10.1007/s00441-017-2782-x- 45.
Atasoy IL, Dursun E, Gezen-Ak D, Metin-Armagan D, Ozturk M, Yilmazer S (2017) Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat 80:19–26. https://doi.org/10.1016/j.jchemneu.2016.11.007- 46.
Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V (2013) Inflammatory process in Alzheimer’s disease. Front Integr Neurosci 7:59. https://doi.org/10.3389/fnint.2013.00059- 47.
Rostami F, Javan M, Moghimi A, Haddad-Mashadrizeh A, Fereidoni M (2017) Streptozotocin-induced hippocampal astrogliosis and insulin signaling malfunction as experimental scales for subclinical sporadic Alzheimer model. Life Sci 188:172–185. https://doi.org/10.1016/j.lfs.2017.08.025- 48.
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC et al (2019) Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 15:540–555. https://doi.org/10.1038/s41582-019-0231-z- 49.
Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. https://doi.org/10.1038/nn.4338- 50.
Takemiya T, Fumizawa K, Yamagata K, Iwakura Y, Kawakami M (2017) Brain Interleukin-1 facilitates learning of a water maze spatial memory task in young mice. Front Behav Neurosci 11:202. https://doi.org/10.3389/fnbeh.2017.00202- 51.
Casella G, Garzetti L, Gatta AT, Finardi A, Maiorino C, Ruffini F, Martino G, Muzio L et al (2016) IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J Neuroinflammation 13(1):139. https://doi.org/10.1186/s12974-016-0596-5- 52.
Lai TH, Chung CH, Chen BH, Hung CF, Inbaraj BS, Ma MC, Chen HM, Tsou CJ et al (2016) Gold nanoparticles compromise TNF-alpha-induced endothelial cell adhesion molecule expression through NF-kappaB and protein degradation pathways and reduce neointima formation in a rat carotid balloon injury model. J Biomed Nanotechnol 12(12):2185–2101- 53.
Pereira DV, Petronilho F, Pereira HR, Vuolo F, Mina F, Possato JC, Vitto MF, de Souza DR et al (2012) Effects of gold nanoparticles on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 53(13):8036–8041. https://doi.org/10.1167/iovs.12-10743- 54.
Sumbayev VV, Yasinska IM, Garcia CP, Gilliland D, Lall GS, Gibbs BF, Bonsall DR, Varani L et al (2013) Gold nanoparticles downregulate Interleukin-1-induced pro-inflammatory responses. Small 9(3):472–477. https://doi.org/10.1002/smll.201201528- 55.
Giannakopoulou A, Lyras GA, Grigoriadis N (2017) Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis. J Neurosci Res 95(7):1446–1458. https://doi.org/10.1002/jnr.23982- 56.
Cirillo C, Capoccia E, Iuvone T, Cuomo R, Sarnelli G, Steardo L, Esposito G (2015) S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. Biomed Res Int 2015:1–11. https://doi.org/10.1155/2015/508342- 57.
Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121. https://doi.org/10.3233/JAD-161088- 58.
Yin F, Sancheti H, Patil I, Cadenas E (2016) Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radical Bio Med 100:108–122. https://doi.org/10.1016/j.freeradbiomed.2016.04.200- 59.
Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM (2013) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One 8(2):e58208. https://doi.org/10.1371/journal.pone.0058208- 60.
Cho MH, Kim DH, Choi JE, Chang EJ, Seung Y (2012) Increased phosphorylation of dynamin-related protein 1 and mitochondrial fission in okadaic acid-treated neurons. Brain Res 1454:100–110. https://doi.org/10.1016/j.brainres.2012.03.010- 61.
Yakimovich T, Lemaire ED, Kofman J (2009) Engineering design review of stance-control knee-ankle-foot orthoses. J Rehabil Res Dev 46(2):257–267- 62.
Zhou YT, He W, Wamer WG, Hu X, Wu X, Lo YM, Yin JJ (2013) Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale 5(4):1583–1591. https://doi.org/10.1039/c2nr33072e- 63.
Yakimovich NO, Ezhevskii AA, Guseinov DV, Smirnova LA, Gracheva TA, Klychkov KS (2008) Antioxidant properties of gold nanoparticles studied by ESR spectroscopy. Russ Chem B+ 57(3):520–523. https://doi.org/10.1007/s11172-008-0080-1- 64.
Kirdaite G, Leonaviciene L, Bradunaite R, Vasiliauskas A, Rudys R, Ramanaviciene A, Mackiewicz Z (2019) Antioxidant effects of gold nanoparticles on early stage of collagen-induced arthritis in rats. Res Vet Sci 124:32–37. https://doi.org/10.1016/j.rvsc.2019.02.002- 65.
Rizwan H, Mohanta J, Si S, Pal A (2017) Gold nanoparticles reduce high glucose-induced oxidative-nitrosative stress regulated inflammation and apoptosis via tuberin-mTOR/NF-kappaB pathways in macrophages. Int J Nanomedicine 12:5841–5862. https://doi.org/10.2147/IJN.S141839- 66.
Silveira PC, Victor EG, Notoya Fde S, Scheffer Dda L, Silva L, Cantu RB, Martinez VH, de Pinho RA et al (2016) Effects of phonophoresis with gold nanoparticles on oxidative stress parameters in a traumatic muscle injury model. Drug delivery 23(3):926–932. https://doi.org/10.3109/10717544.2014.923063- 67.
Huang X, El-Sayed IH, Yi X, El-Sayed MA (2005) Gold nanoparticles: catalyst for the oxidation of NADH to NAD. J Photochem Photobiol B 81(2):76–83. https://doi.org/10.1016/j.jphotobiol.2005.05.010- 68.
Goldstein A, Soroka Y, Frusic-Zlotkin M, Lewis A, Kohen R (2016) The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway. Nanoscale 8(22):11748–11759. https://doi.org/10.1039/c6nr02113a- 69.
Lai TH, Shieh JM, Tsou CJ, Wu WB (2015) Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells. Int J Nanomedicine 10:5925–5939. https://doi.org/10.2147/Ijn.S88514- 70.
Manna K, Mishra S, Saha M, Mahapatra S, Saha C, Yenge G, Gaikwad N, Pal R et al (2019) Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: assessment of NF-kappa B and Nrf2 signaling system. Int J Nanomedicine 14:1753–1777. https://doi.org/10.2147/Ijn.S176013
Funding
This work was supported by FAPESC-PPSUS 2016, CNPq, Instituto Nacional de Neurociência Translacional-INNT #465346/2014-6, and Unesc.
Author information
Affiliations
Corresponding author
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Bairro Universitário, Criciúma, SC, 88806-000, Brazil
- Natalia dos Santos Tramontin
- , Sabrina da Silva
- , Kellen Simon Ugioni
- , Paula Bortuluzzi Canteiro
- , Gustavo de Bem Silveira
- , Carolini Mendes
- , Paulo Cesar Lock Silveira
- & Alexandre Pastoris Muller
- Universidade de Rio Verde, Rio Verde, GO, 75901-970, Brazil
- Rychard Arruda
- Programa de Pos Graduação em Farmacologia, UFSC, Florianópolis, SC, Brazil
- Alexandre Pastoris Muller
Correspondence to Alexandre Pastoris Muller.
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 18 kb)
Rights and permissions
Reprints and Permissions
-
우리는 은銀용액 Colloidal Silver 또는 금 金용액 Colloidal Gold을 의약품이라 주장하지 않습니다. 이곳에서는 나노 은 (AgNPs) 및 나노 금(AuNPs)입자와 이온의 효능과 작용에 대해 연구 조사하고 정보를 제공합니다.Dismiss Notice
은용액이나 금용액을 건강 목적으로 사용하는 경우 사용자는 충분한 지식과 이해를 바탕으로 자신의 책임을 주장할 수 있어야 합니다. -
이 곳에서 인용되거나 연결된 문서 및 정보는 특별한 명시가 없는 한 공개와 무료로 사용이 가능하다는 관례에 따르며, 해당 문서 및 정보의 배포자가 저작권을 주장하는 범위에 따라 저작 및 소유권은 해당 권리자에게 있습니다. 이 곳에 공개된 다른 문서는 우리 사이트에 등록된 것임을 명시하는 것을 전제로 수정하지 않고 배포, 저장 등 자유롭게 사용할 수 있습니다.
금 나노 금 나노 입자는 알츠하이머 질병 모델에서 뇌손상을 역전
Discussion in '금Gold 은silver 요법' started by Mind Central, 2020-03-07 02:17.